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Abstract

Children show marked improvements in executive functioning (EF) between 4 and

7 years of age. In many societies, this time period coincides with the start of formal

school education, inwhich children are required to follow rules in a structured environ-

ment, drawing heavily on EF processes such as inhibitory control. This study aimed to

investigate the longitudinal development of two aspects of inhibitory control, namely

response inhibition and response monitoring and their neural correlates. Specifically,

we examined how their longitudinal development may differ by schooling experience,

and their potential significance in predicting academic outcomes. Longitudinal data

were collected in twogroupsof children at their homes.At T1, all childrenwere roughly

4.5 years of age and neither group had attended formal schooling. One year later at T2,

one group (P1, n = 40) had completed one full year of schooling while the other group

(KG, n = 40) had stayed in kindergarten. Behavioural and brain activation data (mea-

sured with functional near-infrared spectroscopy, fNIRS) in response to a Go/No-Go

task and measures of academic achievement were collected. We found that P1 chil-

dren, compared toKGchildren, showedagreater changeover time inactivation related

to responsemonitoring in the bilateral frontal cortex. The change in left frontal activa-

tion difference showed a small positive association with math performance. Overall,

the school environment is important in shaping the development of the brain functions

underlying themonitoring of one own’s performance.
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1 INTRODUCTION

The developmental period of transitioning from kindergarten to for-

mal schooling is characterized by remarkable improvements in cogni-

tive functions. As children prepare for and settle into school and class-

room environments, they are increasingly expected to orchestrate and
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exert control over their own thoughts and behaviors, in accordance to

goals and context—a set of skills collectively known as executive func-

tioning (EF; Diamond, 2013). In this study, we investigated the longitu-

dinal development of a key component of EF, namely inhibitory control

and its neural correlates, how these differ by schooling experience, and

their potential significance in predicting academic outcomes.
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There is accumulating evidence to suggest inhibitory control, the

capacity to interrupt a prepotent response and enact an alternative

less salient response associated with goal attainment, may play a

key role in determining school readiness (Müller et al., 2008) as well

as predicting future academic achievement (Blair & Razza, 2007;

Duckworth et al., 2019; Gawrilow et al., 2014; McClelland et al., 2014;

Smith-Donald et al., 2007; Son et al., 2019). For instance, Bierman

et al. (2008) found that, in a sample of typically developing preschool

children, tasks of working memory and inhibitory control predicted

emerging literacy skills. This finding is in agreement with Blair and

Razza (2007), who examined the role of self-regulation in relation to

emerging academic abilities in 3- to 5-year-old children. While several

aspects of self-regulation predicted certain academic outcomes,

inhibitory control made independent contributions to all three mea-

sures of academic ability (mathematical knowledge, letter knowledge,

and phonemic awareness). The authors suggested that the ability to

inhibit distracting or irrelevant information while reading or when

facedwith anumerical problemmaybea contributing factor to success,

over and above specific knowledge of problem solutions. For example,

inhibitory control may allow children to consider multiple dimensions

of aproblem, rather than focusingon themost salient or recent aspects.

While inhibitory control prior to starting school may play an impor-

tant role in predicting future academic success, the school environ-

ment itself may play an equally important role in shaping these skills. In

school, children are required to follow classroom rules, sit still, and pay

attention for a large portion of the lessons while suppressing any dis-

tractions that may interfere with their learning (Bierman et al., 2008).

These demands draw heavily on inhibitory processes. Therefore, it is

conceivable that the environment of formal schooling may advance

the development of inhibitory control, in comparison to kindergartners

that tend to bemore play-oriented (Morrison et al., 1997).

1.1 School cut-off design

To estimate the causal effects of schooling on cognitive development is

not trivial, as schooling and development are confounded in time. The

cut-off design (for a review, see Morrison et al., 2019) is an effective

longitudinal method for examining unique schooling effects by taking

advantageof arbitrary school cut-off dates. Thismethodcompares chil-

dren who are similar in age, but due to fixed entry dates, are enrolled

into different school years. Previous studieswith a cut-off design found

causal, beneficial effects of schooling on aspects of literacy (Morrison

et al., 1995; Varnhagen et al., 1994) and numeracy (Bisanz et al., 1995;

Christian et al., 2000). Recent years have seen a growth in research

examining schooling-related effects onmore basic cognitive processes,

such as EF, given the associations shown between its subcomponents

with academic achievement (Morrison et al., 2019). However, the find-

ings here are mixed. For instance, Burrage et al. (2008) assessed inhi-

bition in two groups of 5-year-old children born within 4 months of

each other during the fall and spring semesters of the school year. The

researchers found no significant difference in performance between

children who had attended school and those who had stayed in kinder-

ResearchHighlights

∙ Using a modified school cut-off design, we collected lon-

gitudinal assessments of two aspects of inhibitory control,

namely response inhibition and response monitoring, and

their neural correlates.

∙ For responsemonitoring, P1 children, compared to kinder-

garten children, showed a greater difference after 1 year

of schooling in activation between correct and incorrect

responses in the bilateral frontal cortex.

∙ The left frontal activation difference in P1 children

showed a small association withmath performance.

∙ The school environment plays an important role in shaping

the development of brain functions underlying the moni-

toring of one own’s performance.

garten.On theother hand,Kimet al. (2021) useda school cut-off design

to examine performance on an inhibitory control task in 4- to 7-year-

old children. Therewasa significant differencebetween first grade chil-

dren and kindergarten children, with kindergarteners showing greater

improvements across the year. However, this result should be inter-

preted with caution for several reasons. First, based on the data pre-

sented, it appears the first-grade children may have been significantly

older than the kindergartners at baseline, which was not controlled

for in the analyses. Second, initial differences in performance existed

between the two groups at the start of the year, with the first graders

outperforming the kindergarteners at baseline. Hence, it is unclear

whether the kindergarteners improved more from the experience of

kindergarten or were just “catching up” in performance with age.

1.2 Response inhibition and response monitoring

Despite the growing interest in how schooling may influence various

aspects of basic cognition, there have been very few neurodevelop-

mental investigations. The only longitudinal inquiry into schooling-

effects on neural correlates of inhibitory control was conducted by

Brod et al. (2017). Using a cut-off design, fMRI data were collected on

5- and 6-year-old children while they completed a go/no-go task. This

study sought to uncover schooling-related effects in response inhibition,

and thus focused on activation for successfully inhibited (no-go)

and successfully executed (go) trials. While no group differences in

activation were found during correct no-go trials, a larger increase

in activation in the right superior posterior parietal cortex (PPC), an

area associated with sustained attention, was found for correct go

trials, only in children who attended school. The authors concluded

the increased engagement of the PPCmay reflect a direct effect of the

schooling experience, where children are required to pay attention for

extended periods of time in classrooms.

Although trials with correct responses have traditionally been

the focus of analyses in a go/no-go task, a separate literature have
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highlighted a unique pattern of activation in response to errors. First

recognized by ERP researchers (Falkenstein et al., 1991; Gehring et al.,

1993), the negative and positive components that arise following an

incorrect response to a no-go trial are referred to as the error-related

negativity (ERN) and error-related positivity (Pe). These components

presumably reflect the functioning of a network of structures, includ-

ing the anterior cingulate cortex (ACC) and lateral prefrontal cortex

(LPFC), and are thought to reflect error detection and/or conflict res-

olution processes associated with response monitoring (Grammer et al.,

2014; Kim et al., 2016).

Interestingly, response monitoring is one of the components of cog-

nitive control that has been linked to academic success (Denervaud,

Knebel, et al., 2020; Kim et al., 2016), and its deficits are associated

with developmental disorders including attention deficit hyperactivity

disorder (Groom et al., 2013). To be successful in school, children must

monitor their own progress, detect errors when they occur, and sub-

sequently adapt their own behaviour. In comparison to kindergarten,

teachers in school classrooms also provide more directive feedback on

the accuracy of children’s schoolwork, possibly shaping their sensitiv-

ity to errors (Denervaud, Knebel, et al., 2020). Relating response mon-

itoring and schooling, Grammer et al. (2014) administered a go/no-go

task to a sample of 3- to 7-year-old children and found that Pewas sen-

sitive to age-related change during the school transition period, where

older children exhibited a larger Pe than younger children. Further, Kim

et al. (2016) administered a go/no-go task alongside two measures of

academic achievement; math and reading. Using a multiple regression

analysis, they found that stronger reading and math skills predicted

a larger Pe but did not predict the ERN. Thus, the authors concluded

that the Pe, rather than the ERN, may be associated with academic

achievement. Most developmental research in response monitoring

has been conducted using EEG, with a small number of studies that

have used fMRI (Denervaud, Fornari, et al., 2020; Rubia et al., 2007).

Specifically, Rubia et al. (2007) compared brain activation between

adults and children while they completed a modified stop task. During

unsuccessful no-go trials (contrasted with successful go trials), adults

and children showed similar activation in the medial prefrontal cor-

tex, anterior, and posterior cingulate gyrus. However, adults showed

increased activation compared to children in the ACC. Thus, converg-

ing evidence from fMRI and EEG investigations has identified neural

signatures of response monitoring after committing errors, and high-

lights the involvement of a network of frontal regions, whichmay show

developmental and/or schooling differences.

1.3 Present study

Based on the review above, several questions remain that the current

study aimed to address. First, although Brod et al. (2017) reported that

1 year of formal schooling results in increased engagement of the PPC,

it is unknown whether this increase predicts academic achievement.

Previous studies that have investigated the link between response

inhibition and academic achievement have been strictly correlational.

Thus, any causal links between the two remain to be demonstrated.

Second, it is unknown whether entering formal education causally

impacts the frontal networks underlying response monitoring, as none

of the studies that examined response monitoring and schooling uti-

lized a cut-off design. To fill in these knowledge gaps, we conducted a

study in Scotland with a modified cut-off design. Rather than compar-

ing childrenborn severalmonthsbefore andafter a cut-off date, all chil-

dren in the current study were born in January and February of 1 year.

This was possible because in Scotland, school commencement dates

fall in August, with the school-starting cohort consisting of children

born between the beginning of March in 1 year (aged 5.5) and the end

of February (aged 4.5) of the following year. However, parents of chil-

dren born in January and February can choose to enroll their child into

school or defer their entry until the following year, and these requests

are automatically approved. Thus, the current study compared two

groups of children across time: one group enrolled into school as soon

as they were eligible and completed 1 year of primary school (P1), and

the other group deferred their school entry and stayed in kindergarten

(KG). At timepoint 1 (T1) children in both groups were 4.5-years-old

and in kindergarten. At timepoint 2 (T2), children in both groups were

5.5-years-old, but P1 children had completed one full year of schooling

while KG children had completed another year of kindergarten.

Thus, this quasi-experimental design allows for the comparison of

two groups of children who are similar in age but differ in their expe-

rience in a school context. This is important, given that the kinder-

garten and schooling environments differ in several ways. Specifically,

Sharp (2002) conducted a review of UK and European policy on school

starting ages and highlighted four important differences between the

schooling and kindergarten environments. First, children in school

spend less time on tasks of their own choosing as schoolteachers take

on a more instructional and didactic role. Second, children spend less

time outside engaging in physical activities and discovering their envi-

ronment and instead, spend more time in class sitting still. This is

reflected in research conducted by Quick et al. (2002), who found

almost half of the British school headteachers interviewed felt their

outdoor learning facilities were inadequate. Third, the school curricu-

lum places a larger emphasis on subject-related academic material as

opposed to learning through play and finally, the adult to child ratio is

usually higher in pre-school settings.

Our first question sought to determine whether entering formal

schooling leads to increased engagement of the neural networks

underlying response inhibition and response monitoring. To answer

this question, we employed a portable functional near-infrared spec-

troscopy (fNIRS) system, which allowed us to collect data on children

in their homes (seemore details inMcKay et al., 2021). This system has

several advantages over other imaging modalities as it is non-invasive,

cost-effective, portable, and easy to use with young children. Our sec-

ond question inquired whether schooling-specific improvements in

response inhibition and/ormonitoring, if any, would be associatedwith

improvements in academic achievement1. In line with findings by Brod

et al. (2017), we predicted both groups would show improvements in

1 This project was pre-registered on As.Predicted.org (#34866). We initially planned to also

examine the relationship between performance/neural activation of the go/no-go task with

another behavioural EF task that taps into cognitive flexibility (hearts-and-flowers task).
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response inhibition, with P1 children showing a larger increase in pari-

etal activation associatedwith sustainedattention as a result of school-

ing. Further, based on research suggesting a link between response

inhibition and future academic success (Blair & Razza, 2007; Gawrilow

et al., 2014; McClelland et al., 2014; Smith-Donald et al., 2007; Son

et al., 2019), we predicted the schooling-specific increase in parietal

activation in the P1 children would be associated with larger improve-

ments in academic achievement. Next, we predictedP1 childrenwould,

over time, show stronger response monitoring after committing error

(i.e., acting wrongly based on prepotent response), and thus show a

stronger change in activation in the frontal cortex in response to error

trials. Lastly, based on work by Grammer et al. (2014), we predicted

schooling-specific changes in response monitoring in the P1 children

would be associated with improvements in academic achievement.

2 METHOD

2.1 Participants

Participants were recruited through gateway organizations such as

nurseries and leisure centers. Parents of eligible children contacted the

research team to schedule a testing session. All children had normal or

corrected tonormal vision, nohistory of colour-blindness, noneurolog-

ical conditions, andwere born full term (> 37weeks) with an uncompli-

cated birth. Parents and children provided informed consent prior to

testing. The research was approved by the General University Ethics

Panel (GUEP 375 and 375A) at the University of Stirling.

Children were tested in their home on two separate occasions,

across 2 consecutive years. At T1, 95 4.5-year-olds were recruited for

the study. Fifteen children were excluded from all analyses; 12 chil-

dren (5 P1, 7 KG) interfered with the fNIRS set-up (pulled the cap off)

before the completion of the task, and three children provided unus-

able data (two KG children had thick hair that led to poor signal qual-

ity, and data from one P1 child was lost due to experimenter error).

Hence, a total of 80 children (39 females, Mage at T1 = 53.5 months,

SD = 1.2, range = 5 months) provided potentially usable fNIRS data at

T1 (see further analysis-specific criteria below). All 80 children agreed

to take part at T2 (39 females, Mage at T2 = 65.5 months, SD = 1.2,

range=5months).Of these children, 40 (24 females,Mage at T2=65.6

months, SD = 1.1, range = 5 months) attended P1 in between the two

timepoints, and 40 (15 females, Mage at T2 = 65.4 months, SD = 1,

range= 4months) remained in KG.2

However, due to anerror in task programming, the data from thehearts-and-flowers task could

not be interpreted. Therefore,we focusedon children’s performance andbrain responseon the

go/no-go task, and relate these tomeasures of academic achievement.
2 Given the potential associations between task compliance and inhibitory skills, we compared

childrenwho refused to participate versus childrenwho agreed to participate on a broad range

of questionnaire variables that were collected as part of the larger project. These question-

naires assessed factors such as child temperament, quality of the parent-child relationship, and

SES status. We found a significant group difference in two subscores of the Parenting Stress

Index (Abidin et al., 2013). The first subscoremeasured child hyperactivity (p=.015), with those

who did not participate scoring higher on this scale. We also found that children who did not

participatewere scored as less demanding (p=.014).However, it is important to note that these

correlations do not survive correction for multiple comparison.

2.2 fNIRS analysis exclusion (see Figure 1)

2.2.1 Response inhibition

Two children (1 P1, 1 KG) were excluded from the response inhibition

fNIRS analyses for contributing fewer than six usable correct no-go tri-

als across both timepoints and five children were excluded for provid-

ing incomplete data (two children (2 KG) refused to complete the task

anddata from three children (2P1, 1KG)was corrupted).Hence, a total

of 73 children contributed longitudinal data for the response inhibition

fNIRS analyses. Of these children, 37 were in P1 group and 36 were in

KG group.

2.2.2 Response monitoring

Fifteen children (8 P1, 7 KG) were excluded from the response moni-

toring fNIRS analyses for contributing fewer than six usable incorrect

no-go trials acrossboth timepoints, and four childrenwereexcluded for

providing incomplete data (one KG child refused to complete the task

and data from three children (2 P1, 1 KG) was corrupted). A total of

61 children contributed to the responsemonitoring fNIRS analyses. Of

these children, 30were in P1 group and 31were in KG group.

2.3 Behavioural exclusion

2.3.1 Vocabulary

Three children were excluded from the vocabulary analyses (two chil-

dren (1 P1, 1KG) refused to do the task and data fromoneKGchildwas

lost due to experimenter error). Seventy seven children contributed to

the final vocabulary analyses. Of these children, 39 were in P1 group

and 38were in KG group.

2.3.2 Numeracy

Six children were excluded from the numeracy analyses (five children

(3 P1, 2 KG) refused to complete the task and data from one KG child

was lost due to experimenter error). Seventy four children contributed

to the final numeracy analyses. Of these children, 37 were in P1 group

and 37were in KG group.

2.3.3 School achievement packs

No childrenwere excluded on either themath or phoneme pack.

2.4 Experimental task

2.4.1 Cats-and-dogs task

The cats-and-dogs task (CDT), adapted from Brod et al. (2017), was

used to measure response inhibition and response monitoring in
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F IGURE 1 Schematic figure for participant recruitment and data exclusion

F IGURE 2 Trial structure of the
Cats-and-Dogs Task (CDT)

children—see Figure 2. The task was run in E-prime V.3 software on

an HP laptop with a 14-inch screen. During “go” trials, children saw

a picture of a dog and were supposed to press a button (spacebar).

During “no-go” trials, children saw a picture of a cat and were sup-

posed to withhold pressing a button. To ensure children understood

the rules, the session began with three blocks of practice that progres-

sively allowed less time to response. During the practice, childrenwere

reminded of the rules if theymade amistake. Performance on the prac-

tice runswas not included in final analyses. After children completed all

practice blocks, the test session, consisting of two runs began. The first

run was comprised of 59 trials: 44 go trials and 15 no-go trials. Run 2

was compromised of 69 trials: 52 go trials and 17 no-go trials. Pictures

of cats anddogswerepresented for500ms, followedbya fixation cross

as jitter that ranged in duration from 2 to 8 s. Responses made during

stimuli presentation or during the fixation cross period were recorded.

The order of presentation of go and no-go trials was pseudorandom,

with the constraint that no-go trials were preceded equally often by 1,

2, 4, or 5 go trials.
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2.5 Academic performance measures

2.5.1 Vocabulary task (administered at T1 and T2)

The vocabulary subset of the Wechsler Preschool and Primary Scale

of Intelligence (Warschausky & Raiford, 2018) was used to assess

word knowledge. The task included three picture items and 20 verbal

items. During the picture items, children were presented with three

consecutive pictures of objects (car, scissors, banana) and asked to

name each object. If a child incorrectly named the first object (car),

they were corrected. Feedback was not provided for the other two

picture items. For the verbal items, children were required to provide

verbal definitions of words. Corrective feedback was given for the

first two verbal items if a child did not receive a perfect score. No

feedback was provided for the remaining verbal items. In accordance

with the manual, if a child’s response was unclear or too vague, the

experimenter prompted the child by asking, “What do you mean?”, or

“Tell me more about it!”, or some other neutral query. The test was

discontinued if a child gave three consecutive incorrect responses. The

picture and verbal items were summed to provide a total vocabulary

score (out of 43) at each timepoint.

2.5.2 Numeracy task (administered at T1 and T2)

The numeracy screener developed by Nosworthy et al. (2013) was

used to assess basic numeracy skills. Children were required to com-

pare pairs of magnitudes ranging from one to nine and judge which

was larger. Magnitudes were represented symbolically (56 digit pairs)

and non-symbolically (56 pairs of dot arrays). In both the symbolic and

non-symbolic conditions, numerical magnitude was counterbalanced

for the side of presentation. Dot stimuli were also controlled for area

and density. Easier items were presented first, followed by more diffi-

cult items. Children were given 1 min to complete each condition. The

order of the two conditions were counterbalanced across participants.

Children received one point for each correct answer. A final score was

calculated at each timepoint by subtracting incorrect responses from

correct responses.

2.5.3 School achievement packs (administered at
T2 only)

Two measures of achievement were included to assess how much P1

children learned over the course of the first grade in terms of school

content. The math pack contained 25 math questions, adapted from

the Scottish Curriculum For Excellence teaching resources (twinkl,

n.d.). The test was discontinued after three incorrect responses. The

phonemes pack contained 20 questions assessing phonetic aware-

ness, adapted from the Heggerty Phonemic Awareness Program (Heg-

gerty, 2019). The pack included 10 items requiring the addition of

a phoneme, and 10 items requiring the substitution of a phoneme.

A final score for each pack was calculated by summing the correct

responses.

2.5.4 fNIRS data acquisition

fNIRS data were collected at 7.81 Hz using a NIRSport system 8 × 8

(8 sources 8 detectors)/release 2.01 with wavelengths of 850 and

760 nm. Fiber optic cables carried light from the machine to a NIRS

cap. Probe geometry was designed by collating regions of interest

(ROI) from previous fNIRS and fMRI literature (Brod et al., 2017;

Wijeakumar et al., 2015). Probe geometry consisted of four channels

each on the left and right frontal cortices, and three channels each

on the left and right parietal cortices (McKay et al., 2021). Note

that short-source-detector channels were not used to regress scalp

hemodynamics as all the channels were directed toward maximising

coverage of the frontal and parietal cortices. Four cap sizes (50, 52,

54, and 56 cm) were used to accommodate different head sizes.

Source-detector separation was scaled according to cap size (50 cm

cap: 2.5 cm; 52 cm cap: 2.6 cm; 54 cm cap: 2.7 cm and 56 cm cap:

2.8 cm). To synchronise behavioural and fNIRS data, a McDaq data

acquisition device (www.mccdaq.com) was used to send information

from the task presentation laptop to the fNIRS system.

2.6 Procedure

Data were collected in each participant’s home. After arrival, the

researcher measured the circumference of the child’s head and

selected an appropriately sized fNIRS cap. Childrenwere given an iPad

to watch cartoons during the set-up. Once the cap was fitted to the

child’s head, measurements were taken from the inion to the nasion

and from the two peri-auricular points to make sure that the cap was

centered. After the equipment was safely positioned, the instruction

and practices for the CDT started, followed by the actual task. During

the task, if children indicated that theymadeanerror, the experimenter

reassured the child and encouraged them to continue concentrating on

the game. To keep children engaged, each test run contained different

sets of picture of cats and dogs. To maintain motivation, children were

also rewardedwith a sticker after each run.

Once children completed the CDT, they were provided the iPad

to watch cartoons while the researchers removed the cap. After a

short break, testing proceeded with the vocabulary task, followed by

the numeracy task. At T2, children were additionally tested on the

phonemes pack and math pack. The order of the academic perfor-

mance tasks presented was counterbalanced across participants. Chil-

dren were rewarded with stickers after completing each task, regard-

less of their performance. All children were remunerated with £10 and

a toy upon completion of each time point measurement. As part of

the overall procedure for the project, children also completed tasks

on visual working memory, counterfactual reasoning, and associa-

tive memory, while parents filled in questionnaires collecting data on

http://www.mccdaq.com
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demographics, child behaviour, and life stress (data not included here,

see details inMcKay et al., 2021).

3 DATA ANALYSES

3.1 Behavioural analyses

Accuracy was calculated separately for each trial type (go and no-go)

and test run (run 1 and run 2) and timepoint (T1 and T2). The following

formula was used to calculate accuracy and reaction time at each time-

point to account for the different number of trials included in each run.

Weighted average:
((run 1 score ∗ run 1 number of trials) + (run 2 score ∗ run 2 number of trials))

Total number of trials

After computing the weighted averages, a corrected measure of

accuracy (against response biases) was calculated for each subject,

by subtracting no-go incorrect responses from go correct responses

(Gocorrect–NoGoincorrect), separately at each timepoint.

3.2 Outlier correction

All behavioural data were screened for outliers. To correct for lon-

gitudinal outliers, we used the Mahalanobis distance (MD) method.

Further, we screened for outliers that were ±3 SDs from the mean

at each timepoint. Three outliers were identified: two P1 children

were removed from the phonemes pack analyses and one KG child

was removed from the math pack analyses. No other outliers were

identified.

3.2.1 fNIRS preprocessing

fNIRS data were pre-processed using the Homer2 package (https://

www.nitrc.org/projects/homer2/). Raw data were pruned using the

enPrunechannels function (SNRthresh = 2, SDrange = 0.0–45). Signals

were converted from intensity values to optical density (OD) units

using the Intensity2OD function. Data were corrected for motion using

the hmrMotionCorrectPCArecurse function, (tMotion = 1, tMask = 1,

STDEVthresh = 50, AMPthresh = 0.5, nSV = 0.97, maxlter = 5,

turnon = 1). Data were scanned for motion artifacts using hmr-

MotionArtifactByChannel function (tMotion = 1, tMask = 1, STDE-

Vthresh = 50, AMPthresh = 0.5). Then, the function enStimRejection

(tRange = −1 to 3) was used to turn off stimulus triggers that con-

tained motion artifacts. The data were band-pass filtered using hmr-

BandpassFilt to include frequencies between 0.016 and 0.5 Hz. Using

the function hmrOD2Conc, the OD units were converted to concentra-

tion units. To find trials that were outliers with respect to the aver-

age HRF, we used the function hmrFindHrfOutlier (tRange = −1 to 3,

STDEVthresh= 3,minNtrials= 3). Lastly, theHRFwas estimated using

the ordinary least squares method with a modified gamma function

with a square wave (hmrDeconvHRF_DriftSS function [tRange = −1 to

3, paramsBasis = 0.1,0.5,0.5, rhoSD_ssThresh = 0, flagSSmethod = 0,

driftOrder= 3, flagMotionCorrect= 0]).

3.2.2 fNIRS group analyses

Oxygenated haemoglobin (HbO) and deoxygenated haemoglobin

(HbR) beta values were extracted for each run (run 1 and run 2) and

each condition (cue onset of correct go trials, cue onset of correct no-

go trials, cue onset of incorrect go trials, cue onset of incorrect no-go

trials, response at go trials, response at no-go trials). A weighted aver-

age was then calculated to account for the different number of trials

included in each test run to produce one beta estimate per subject, per

condition, per chromophore, and per timepoint.

3.3 Response inhibition analyses

For the response inhibition analyses, we focused onHbOandHbRbeta

estimates for cue onset on correct no-go trials versus correct go trials.

These beta values captured activation right after the onset of the stim-

ulus. At T1, the mean number of correct trials included for P1s were

60±4 go trials and 16±1 no-go trials. Themean number of correct tri-

als included for KGswere 66± 3 go trials and 18± 2 no-go trials. At T2,

themeannumber of correct trials included for P1swere69±4go trials

and 19± 1 no-go trials. Themean number of correct trials included for

KGswere 75± 4 go trials and 18± 1 no-go trials.

3.4 Response monitoring analyses

In the pre-registration, we initially only planned for analysis of

response inhibition, focusingon correct responsesonnogo trials.How-

ever, based on consideration from the literature, we also investigated

activation relating to response monitoring, namely contrasting erro-

neous responses on no-go trials against correct response on go tri-

als. In both trial types a motor response was conducted, followed by

no explicit feedback. Therefore, the post-processing of the erroneous

response in the case of no-go trials is assumed to involve the self-

detection of error and conflict, which should lead to more monitor-

ing and careful responding in subsequent trials, consequently over-

all better performance on the task. Thus, for the response monitoring

https://www.nitrc.org/projects/homer2/
https://www.nitrc.org/projects/homer2/
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F IGURE 3 Graphical illustration of a bivariate latent change score
model. Observed variables are depicted as squares and latent
variables as circles. Variances are shown by two-headed arrows self,
covariances are shown by two-headed arrows across variables, and
regressions are shown by one-headed arrows. Figure created in Onyx
(http://onyx.brandmaier.de)

analyses, we focused onHbOandHbR betas estimates for response on

go trials and response on no-go trials. These beta values captured acti-

vation at the onset of the child’s button press. At T1, the mean number

of trials included for P1swere 61± 4 correct go trials and 12± 1 incor-

rect no-go trials. Themean number of trials included forKGswere 65±

4 correct go trials and 10 ± 1 incorrect no-go trials. At T2, the mean

number of trials included for P1swere 69±4 correct go trials and9±1

incorrect no-go trials. Themeannumber of trials included forKGswere

74± 4 correct go trials and 12± 1 incorrect no-go trials.

3.5 Modelling framework

Univariate latent change score (LCS) models (Kievit et al., 2018;

McArdle & Hamagami, 2004) were used to investigate the degree of

longitudinal change in behavioral performance and brain activation.

All univariate models were set up as multi-group models, allowing

the same model to be fitted for each group (P1 vs. KG) and later on

parameter comparisons. Individual growth is captured by T1 (i.e., the

intercept of X1_T1–Figure 3) and the latent change score factor (ΔX1),
modelled as the difference between the initial observation and subse-

quent observation. Average group change across time is captured by

themean of the latent change score factor (μΔX1), and between-person

differences in change are captured by the variance (σ2ΔX1). Lastly,
the covariance or regression parameter (βXT1ΔX1) determines to what

extent the amount of change depends on scores at T1.

At the next step, with the inclusion of an extra domain, a univari-

ate LCSmodel can be extended into a bivariate LCSmodel, allowing for

testing of cross-domain coupling (see Figure 3). To determine whether

scores at T1 in one domain (X1) are associated with scores at T1 in

a second domain (X2), the intercept covariance (ρX1× 2) is estimated.

To examine whether the change in X1 is associated with the change

in X2, the change covariance is estimated (ρΔX1ΔX2). Further, the cou-

pling effect (y2X1ΔX2) determines whether the change in X1 is a func-

tion of the starting point of X2, and vice versa (y1X2ΔX1). For the bivari-

ate LCS model, as motivated by our second research question, only

measures that showed schooling-specific effects, from response inhi-

bition/monitoring on the one hand, and academic performance, on the

other hand, were included.

3.6 Model fit indices

Models were estimated in the lavaan software package in R (version

3.6.2, 2019; Rosseel, 2012). Full information maximum likelihood was

used for model estimation and to handle missing data. To formally test

for significance of parameters of interest, equality constraintwasmade

on the parameter and significance of change in model fit (compared to

the just-identified free model) was assessed using the chi-square dif-

ference test (at p < 0.05). To account for any age and gender effects,

these variables were added as covariates into all models.

4 RESULTS

4.1 Behavioural results

4.1.1 Univariate LCS modelling

Four separate univariatemodels were fitted to each group (P1 andKG)

with (1) corrected accuracy on CDT (Gocorrect-NoGoincorrect) (2) vocabu-

lary scores (3) symbolic numeracy scores (4) non-symbolic numeracy

scores. Rawmeanperformance levels are illustrated inFigure4. Param-

eter estimates are shown in Table 1.

CDT

P1 children showed a significant increase in corrected accuracy

between T1 and T2, while KG children did not. However, when the

change in corrected accuracy was constrained to be equal across

groups, model fit was not significantly worse, Δx2 = 1.237, Δdf = 1,

p = 0.266. There was also no significant worsening in model fit when

the baseline scores at T1 were constrained to be equal across groups

Δx2 = 0.189, Δdf = 1, p = 0.664. This suggests that P1 children and

KG children started out with similar accuracy and changed comparably

across the two timepoints, contrary to our hypothesis.

http://onyx.brandmaier.de
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F IGURE 4 Behavioural estimates for the (a)CDT task (corrected accuracy based on Gocorrect-NoGoincorrect) (b) vocabulary task (c) numeracy
task (symbolic) (d) numeracy task (non-symbolic). P1 children are shown in blue and KG children are shown in orange. “-“ denotes significance at
p< 0.05 level (see text for the results of formal model comparison). Error bars show SEM

Vocabulary

Both P1 children and KG children showed a significant increase in

vocabulary scores between T1 and T2. Constraining the change to be

equal across groups led to a significant drop in model fit Δx2 = 5.001,

Δdf= 1, p= 0.025, suggesting P1 children increased significantly more

than KG children. No significant differences at T1 were found Δx2 =
0.084, Δdf = 1, p = 0.772. Therefore, P1 children and KG children

started out with similar accuracy, but the improvement in P1 children

on vocabulary knowledge was greater than the improvement in KG

children.

Numeracy

For the symbolic condition, both P1 children and KG children showed

a significant increase in scores between T1 and T2. No significant drop

in model fit was found when the change was constrained to be equal

across groups Δx2 = 0.413, Δdf = 1, p = 0.520. Further, no significant

baseline difference was found when the scores at T1 were constrained

to be equal across groups Δx2 = 3, Δdf = 1, p = 0.083. For the non-

symbolic condition, P1 children significantly improved between the

two timepoints while KG children did not. However, when the change

was constrained to be equal across groups, no significant drop inmodel

fit was observed Δx2 = 2.037, Δdf = 1, p = 0.154. Further, no signif-

icant drop in model fit was found after constraining T1 estimates to

be equal across groups Δx2 = 0.002, Δdf = 1, p = 0.969. Thus, for

both conditions of the task, P1 children and KG children started out

with similar scores and they changed comparably between the two

timepoints.

School achievement packs

Univariate models could not be fitted to the school achievement packs

as they were only administered at T2. Thus, simple t-tests were con-

ducted to compare performance between P1 and KG children on these

measures. As expected, we found that P1 children (Math: M = 30.1,

SD = 6.6; Phonemes: M = 6.4, SD = 4) performed significantly bet-

ter than KG children (Math: M = 23.9, SD = 6.5; Phonemes: M = 2.5,

SD = 2.7) on both math and phonemes, respectively (t[77] = 4.233,

p< 0.001; t[76]= 5.067, p< 0.001).

4.1.2 fNIRS results

fNIRS data were comprised of HbO and HbR beta values for each

of the 14 channels. To reduce data dimension and focus subsequent

analyses on effects that had a difference between HbO and HbR, an

initial repeated measure ANOVA including chromophore (HbO, HbR)

as a factor was run for each channel, using the Benjamini-Hochberg

method to correct for multiple comparisons. For the response inhibi-

tion analyses, a repeated measures ANOVA with a within-subject fac-

tor of trial type (go correct, no-go correct) and chromophore (HbO,

HbR) and a between-subjects factor of group (P1, KG)was run for each

of the 14 channels. For the response monitoring analyses, a repeated

measures ANOVA with a within-subject factor of trial type (go cor-

rect, no-go incorrect) and chromophore (HbO, HbR) and a between-

subjects factor of group (P1, KG) was run for each of the 14 channels.

We focused on significant interactions involving chromophore as a
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factor, and followed up with post-hoc analyses conducted on the HbO

estimates.

Response inhibition analyses

Only channels that showed a significant interaction involving chro-

mophore and that survived the Benjamini-Hochberg correction are

reported. The interaction between trial type and chromophore

was significant in channels overlying the right middle frontal

gyrus (F[1,71] = 12.052, p = 0.001), the right inferior frontal

gyrus (F[1,71] = 8.241, p = 0.005), the right supramarginal gyrus

(F[1,70] = 7.932, p = 0.006), and the left supramarginal gyrus

(F[1,71]= 11.876, p= 0.001). Following up on the interaction, post-hoc

tests revealed that HbO activation for go correct trials was greater

than activation for no-go correct trials (see Table 2). The remaining

three-and four-way interactions between group, trial type, time,

and chromophore were either not significant or did not survive the

Benjamini-Hochberg correction.

Response monitoring analyses

Only channels that showed a significant interaction with chro-

mophore and that survived the Benjamini-Hochberg correction are

reported. The interaction between trial type and chromophore was

significant in channels overlying the right middle frontal gyrus

(F[1,57] = 21.134, p < 0.001; F[1,57] = 15.341, p < 0.001), the right

inferior frontal gyrus (F[1,57] = 19.023, p < 0.001), the left middle

frontal gyrus (F[1,57] = 40.548, p < 0.001), the left inferior frontal

gyrus (F[1,57] = 18.279, p < 0.001; F[1,57] = 10.769, p = 0.002), and

the right supramarginal gyrus (F[1,56] = 6.773, p = 0.012). Following

up on the interaction, post-hoc tests revealed that HbO activation for

(erroneous) response at no-go trials was more negative than for (cor-

rect) response at go trials (see Table 3).

A significant four-way interaction between group, time, trial, and

chromophore was observed in channels overlying the right middle

frontal gyrus (F[1,57]= 10.198, p= 0.002; F[1,57]= 5.671, p= 0.021),

the right inferior frontal gyrus (F[1,57]=7.402, p=0.009), the leftmid-

dle frontal gyrus (F[1,57] = 9.912, p = 0.003), the left inferior frontal

gyrus (F[1,57]=5.897, p=0.018), and the right superior occipital gyrus

(F[1,56] = 5.976, p = 0.018). All post-hoc tests are shown in Table 3.

Importantly, in the bilateral middle frontal gyrus and bilateral infe-

rior frontal gyrus, P1 children showed greater negative activation for

response at incorrect no-go trials than for correct go trials at both T1

and at T2. This was not the case for KG children, who only showed

a difference in activation between these trials at T1. Therefore, the

ANOVA revealed that the difference in activation between correct go

trials and incorrect no-go trials across time differentiated P1 children

from KG children. To relate these neural differences in response mon-

itoring to behavior using the bivariate LCS models, an average differ-

ence in activation (go correct activation–no-go incorrect activation)

was computed across channels of nearby regions that showed the sig-

nificant four-way interaction with similar patterns. Specifically, this led

to two clusters covering the right frontal cortex (averaging channels 1,

2, and 3; see Figure 5a) and the left frontal cortex (averaging channels

5 and 7; see Figure 5b).
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TABLE 2 Response inhibition analysis: Channels showing significant interactions between trial type (go correct and no-go correct) and
chromophore

Channel No. Brain areas (MNI coordinates) Trial x Chromophore (HbO)

Channel 1 Right middle frontal gyrus Go>No-go (p= 0.007)

Channel 2 Right middle frontal gyrus

Channel 3 Right inferior frontal gyrus Go>No-go (p= 0.006)

Channel 4 Right inferior frontal gyrus

Channel 5 Left middle frontal gyrus

Channel 6 Left middle frontal gyrus

Channel 7 Left inferior frontal gyrus

Channel 8 Left inferior frontal gyrus

Channel 9 Right angular gyrus

Channel 10 Right superior occipital gyrus

Channel 11 Right supramarginal gyrus Go>No-go (p= 0.008)

Channel 12 Left inferior parietal lobule

Channel 13 Left angular gyrus

Channel 14 Left supramarginal gyrus Go>No-go (p= 0.004)

Significant post-hoc results are shown for HbO estimates.

TABLE 3 Responsemonitoring analysis: Channels showing significant two-way interaction between trial type (go correct vs. no-go incorrect)
and chromophore, and four-way interaction between group, trial type, time, and chromophore

Channel No. Brain areas (MNI coordinates) Trial×Chromophore (HbO)

Group× Trial× Time×

Chromophore (HbO)

Channel 1 Right middle frontal gyrus Go>No-go (p< 0.001) P1 T1: Go>No-go (p= 0.048);

P1 T2: Go>No-go (p= 0.001);

KG T1: Go>No-go (p= 0.036)

Channel 2 Right middle frontal gyrus Go>No-go (p< 0.001) P1 T1: Go>No-go (p= 0.013);

P1 T2: Go>No-go (p< 0.001)

Channel 3 Right inferior frontal gyrus Go>No-go (p< 0.001) P1 T1: Go>No-go (p= 0.004);

P1 T2: Go>No-go (p< 0.001);

KG T1: Go>No-go (p= 0.005)

Channel 4 Right inferior frontal gyrus

Channel 5 Left middle frontal gyrus Go>No-go (p< 0.001) P1 T1: Go>No-go (p= 0.001);

P1 T2: Go>No-go (p= 0.002)

Channel 6 Left middle frontal gyrus

Channel 7 Left inferior frontal gyrus Go>No-go (p< 0.001) P1 T1: Go>No-go (p= 0.012);

P1 T2: Go>No-go (p= 0.001);

KG T1: Go>No-go (p< 0.001)

Channel 8 Left inferior frontal gyrus Go>No-go (p= 0.025)

Channel 9 Right angular gyrus

Channel 10 Right superior occipital gyrus P1 T2: Go>No-go (p= 0.05)

Channel 11 Right supramarginal gyrus Go>No-go (p= 0.042)

Channel 12 Left inferior parietal lobule

Channel 13 Left angular gyrus

Channel 14 Left supramarginal gyrus

Significant post-hoc results are shown for HbO estimates.
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F IGURE 5 The difference in activation between go correct and no-go incorrect trials (responsemonitoring contrast) in the (a) right frontal
cluster (b) left frontal cluster. P1 children are shown in blue and KG children are shown in orange. Error bars show SEM

TABLE 4 CDT bivariate couplings between (a) right frontal cluster and corrected accuracy (Gocorrect-NoGoincorrect)and (b) left frontal cluster
and corrected accuracy (Gocorrect-NoGoincorrect), separately for P1 children and KG children

a. Right frontal cluster b. Left frontal cluster

P1 KG P1 KG

Intercept covariance ρX1× 2 .65 (1.3) 2.97* (.78) 3.32* (1) 1.83* (.82)

Right frontal onto corrected accuracy change Y1X2ΔX1 0 (0) −.01 (0) 0 (0) 0 (0)

Corrected accuracy onto right frontal cluster change Y2X1ΔX2 −53.5* (22.37) 3.03 (20.73) −10.1 (19.92) 31.91* (14.6)

Change-change covariance ρΔX1ΔX2 .98 (1.41) −.47 (1.11) 1.35 (1.31) 1.16 (.73)

Standard errors are in parentheses.

*Asterisks denote significance at p< 0.05 level.

4.2 Bivariate LCS modelling

As the first step, we tested the longitudinal coupling between activa-

tion difference in the two frontal clusters and corrected accuracy on

the CDT task for both groups. This ismainly to verify the functional rel-

evanceof the two frontal clusters of responsemonitoring activation for

overall task performance.

4.2.1 Right frontal cluster and CDT corrected
accuracy

Parameter estimates are shown in Table 4. For KG Children, corrected

accuracy at T1 was positively correlated with the difference in activa-

tion in the right frontal cluster at T1. Namely, children who showed

more difference in activation related to response monitoring had bet-

ter performance. Constraining the baseline correlation at T1 to be 0 in

KG children led to a significant drop inmodel fit,Δx2 = 10.707,Δdf= 1,

p= 0.001. No other cross-domain parameters were significant.

For P1 children, corrected accuracy at T1 negatively predicted

the change in the difference in activation in the right frontal cluster

from T1 to T2. Thus, children with better performance at T1 showed

less change in activation over time. However, constraining the cou-

pling pathway to be 0 did not lead to a significant drop in model fit

Δx2 = 3.776, Δdf = 1, p = 0.052. No other cross-domain parameters

were significant.

4.2.2 Left frontal cluster and CDT corrected
accuracy

For KG children, better corrected accuracy at T1 was correlated with

higher difference in activation in the left frontal at T1. Constraining the

baseline correlation at T1 tobe0 inKGchildren led to a significant drop

in model fit, Δx2 = 5.028, Δdf = 1, p = 0.025. Furthermore, higher cor-

rected accuracy at T1 predicted more change in the difference in acti-

vation in the left frontal. To follow-up on this, the coupling pathwaywas

constrained to be 0 in KG children, which led to a significant drop in

model fitΔx2 = 4.492,Δdf= 1, p= 0.034.

For P1 children, similar to KG children, better corrected accuracy at

T1was correlatedwith higher difference in activation in the left frontal

at T1. Constraining the baseline correlation at T1 to be 0 in P1 children

lead to a significant drop in model fit, Δx2 = 5.536, Δdf = 1, p = 0.019.

No other cross-domain pathways were significant.

Taken together, in KG and P1 children, higher response monitor-

ing activation difference in the left frontal cluster (additionally right

frontal cluster for KG)was related to better overall performance in the

inhibitory control task.
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4.3 Academic achievement in P1 children

To address our second research question, we tested to what extent

the schooling-specific response monitoring activation changes in the

two frontal clusters could predict academic achievement. The longitu-

dinal coupling between the activation difference with performance on

the academic tasks was examined. Here, we focused on bivariate rela-

tionships of P1 children (since they were the only group that attended

school and showedagreater responsemonitoring activationdifference

across time). Bivariate relationships for KG children are shown in Sup-

plementaryMaterial (Table S1).

4.3.1 Right/left frontal cluster and academic
achievement

Bivariate longitudinal models were fitted for the response monitor-

ing activation in the right frontal (or left frontal, respectively) and (1)

vocabulary scores (2) math pack, and (3) phonemes pack. The longitu-

dinal change in activation in the left frontal cluster was positively cor-

relatedwithmathpack scores at T2 (p=0.04). To follow-upon this find-

ing, the coupling pathwaywas constrained to be 0, which led to a trend

in drop of model fit Δx2 = 3.488, Δdf = 1, p = 0.062. No other cross-

domain parameters were found to be significant in all other models.

5 DISCUSSION

The present study sought to examine to what extent 1 year of for-

mal schooling shapes the development of neural processes underly-

ing response inhibition and response monitoring, as well as establish

whether these effects, if significant, were related to academic achieve-

ment. First, we found that P1 children andKG children started outwith

similar corrected accuracy on the go/no-go task. Although P1 children,

but not KG children, showed significant improvement on task accuracy

over time, the magnitude of change between the two groups was sta-

tistically comparable. In terms of brain activation, no significant differ-

ences in response inhibition were found between the two groups of

children. However, for response monitoring, after 1 year of schooling

P1 children showed a greater activation difference than KG children.

Functionally, this activation difference was associated with better per-

formance on the go/no-go task. When relating to broader measures of

academic achievement,we founda small associationbetween response

monitoring andmath performance. Each of these aspects of results are

discussed in the following.

While we hypothesized that P1 children would show greater

improvement than KG children across the year, our findings are in

line with Brod et al. (2017) who also reported no group differences in

response inhibition behaviour across the year. However, unlike Brod

et al. (2017) and in contrary to our hypothesis, we also did not find

any group difference in neural activation related to response inhibi-

tion (or parietal activation during go trials as in Brod et al., 2017).

Several methodological differences exist that may account for this

inconsistency. First, children in the current study were between 1 to

2 years younger than the children in the Brod et al. (2017) study, due

to national differences in school entry age. It is conceivable that the

first year of schooling may be set up to be less demanding and for-

mally structured where children start school at a younger age. Thus,

the increase in parietal activation resulting from a schooling envi-

ronment may only appear if there is a sufficiently large change in

terms of demand and expectations transitioning from kindergartens to

classrooms. Second, the current study and that of Brod et al. (2017)

employed different modalities to record brain activation. The fNIRS

channel-based analyses employed heremay not have been as sensitive

as the fMRI analyses conducted by Brod et al. (2017) to detect changes

in activation in small clusters of voxels (as reported in that study). A

potential way to improve upon this would be to conductmore targeted

analyses. For instance, novel image reconstruction uses a head model

to generate functional images of the fNIRS data, transforming surface

level channel-based data into a volumetric representation within the

brain (Forbes et al., 2021). This would allow for greater comparability

with fMRI investigations.

Another limitation of our research may be related to the longitudi-

nal nature of the study. Longitudinal research with fNIRS (and all neu-

roimaging modalities in general) faces the challenge that the recorded

areas may not remain consistent over time, particularly in develop-

mentwhen children’s brains are actively developing and growing.How-

ever, Collins-Jones et al. (2021) recently used image reconstruction to

investigate the effects of variation in array position and head size in

channel-space analysis of longitudinal fNIRS infant data (when head

growth ismost rapid). Specifically, they investigated the effect of varia-

tion in head size and array position on inferences drawn fromboth indi-

vidual and group-level data. They found differing inferences between

the individual and group-level data were primarily due to variability in

array position, however, this effect decreased as group size increased.

Specifically, this study included a sample size of 53 at 5-months, 40

at 8-months, and 45 at 12-months. Thus, the authors concluded that

at these group sizes, the inferences drawn from group level channel-

based analysis are unlikely to be significantly affected by variability in

array position and shifting head sizes.

Finally, Brod et al. (2017) employed a traditional school cut-off

design, in which children whose birthdates fell shortly before and

shortly after an arbitrary cut-off date were compared, resulting in

group assignment that is to some extent random (parents may request

deferral of school entry). On the other hand, the current study took

advantage of school commencement regulations in Scotland, where

parents of children born in January and February each year can

autonomously chose toenrol ordefer their child’s entry to school. Thus,

it is conceivable that parents make this decision based on certain child

characteristics, leading to fundamental differences between children

who are enrolled versus those who are deferred. While this is possi-

ble, the evidence we have in the study suggests that this was likely

not the case. First, P1 and KG children showed no differences in per-

formance at the first timepoint on any of the cognitive and academic

measures included here. Second, the current study is part of a larger

project and thus, we could compare performance between P1 and KG
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children at the first timepoint (prior to starting school) on other mea-

sures. This included a colour change-detection task (assessing visual

working memory) and a grid memory task (assessing associative mem-

ory). No group differences in performance were found on any of these

measures. Finally, and most interestingly, we also administered a bat-

tery of questionnaire to the parents of the children assess here mea-

suring child temperament, quality of the parent-child relationship, and

a range of environmental factors including SES, level of disorganisa-

tion in the home, and number of daily hassles experienced by par-

ents. Critically, no differences between P1 and KG children emerged

in any of these parent-reported measures. In sum, parental belief con-

cerning the child’s school readiness is not systematically reflected in

quantitative measures of cognitive function, academic performance,

and temperament. Descriptive statistics and statistical test results for

these comparisons can be found in Supplementary Materials (Table S2

and S3).

Our second major finding concerns the activation related to

response monitoring, in which we found that P1 children, but not

KG children, showed a greater difference after 1 year of schooling.

As the response monitoring contrast was not part of the study pre-

registration, it was important for us to first establish the functional rel-

evance of the two frontal clusters (left and rightmiddle/inferior frontal

gyrus) that emerged from this contrast. Therefore, we tested the cou-

pling between the difference in activation with performance on the

CDT task, and found that a greater response monitoring activation dif-

ference in the left frontal cluster was related to better performance

in the inhibitory control task in both groups. For KG children, a sim-

ilar relationship was also found for the right frontal cluster. This is in

line with previous research reporting that a greater difference in acti-

vation between correct go and incorrect no-go trials reflectsmore effi-

cient response monitoring (Grammer et al., 2014; Torpey et al., 2012),

whichmay support better task performance. Previous adult fMRI stud-

ies have implicated a broader network of frontal regions subserving

response monitoring. For example, Chevrier et al. (2007) administered

a stop-signal task and found error-related activity in frontal regions

including the right middle frontal gyrus and dorsal ACC. Furthermore,

Edwards et al. (2012) administered a go/no-go task and combined ERP

time courses and fMRI spatial maps allowing for the identification of

brain regions that are associated with portions of the time course in

the ERP data. They identified two components associated with signif-

icant activation in the bilateral middle frontal gyrus and caudal ACC,

demonstrating that both regions are engaged during error processing.

The authors argued the simultaneous involvement of both areas may

reflect a post-error cognitive response, where conflict between the

executed and supposedly correct response occurs via the caudal ACC

and LPFC. Based on experimenter observations in the current study,

this interpretation seems likely as children occasionally showed a reac-

tion reflecting conflict aftermaking an incorrect buttonpress in ano-go

trial. Childrenwould either verbally indicated that theymade amistake

(e.g., saying “oh no”) or show behavior of having committed an error

(e.g., clasping hands over mouth, pulling hand away from keyboard).

Most importantly, in the two frontal clusters identified from the

responsemonitoring contrast, P1 children showed a greater difference

in activation across time than KG children. We posit that, across the

first school year, P1 children showstronger responsemonitoringdue to

the nature of the schooling environment. In school, emphasis is placed

on instructional learning where children are provided with opportuni-

ties to engage in schoolwork and gain insights into their own perfor-

mance based on teacher feedback (Denervaud, Knebel, et al., 2020).

As this instructional learning takes hold, children learn to value cor-

rect answers and avoid errors (Denervaud, Knebel, et al., 2020). In con-

trast, the kindergarten environment introduces learning throughmore

play-initiated activities (Morrison et al., 1997). While free play orien-

tation may benefit children in many ways, it likely does not encourage

the identification of errors on academic tasks as effectively as formal

schooling (Denervaud, Knebel, et al., 2020).

Third, as the next step to determine whether the larger activation

difference in responsemonitoring in the P1 children could predict aca-

demic performance,we investigated the longitudinal coupling between

these variables. We found borderline significant positive correlations

between the change in activation in the left frontal cluster with perfor-

mance on themath pack. This is in linewith Kim et al. (2016)who found

that stronger math skills (as well as reading skills) predicted stronger

ERP component related to response monitoring. Further support for

our finding stem from previous adult EEG research that found a larger

ERN was significantly correlated with better academic performance

(Hirsh & Inzlicht, 2010). Given that monitoring one’s own performance

is a key aspect of self-regulation, the authors interpreted that individu-

als with a greater ability to monitor tend to engage in self-regulatory

behaviours that are important for academic success (Pintrich & De

Groot, 1990). It is however important to note that the change-change

association between the left frontal cluster activation and math per-

formance did not survive the formal model comparison. Therefore, the

result needs to be interpreted with caution and stands for replication

test. Future studies need to be better powered in terms of sample size.

Hertzog et al. (2006) evaluated the statistical power of latent change

scoremodels and found evenwith large sample sizes andmultiplemea-

surement occasions, statistical power to detect covariance in change

remains low. Given the modest sample size of the present study cou-

pled with the inclusion of only two measurement occasions, we likely

did not have sufficient statistical power to detect meaningful relation-

ships, even when present.

Fourth, in terms of more general schooling effects on academic

measures, we found that P1 children showed greater improvements

than KG children in vocabulary. The existing literature into whether

and why schooling might improve vocabulary has been somewhat

mixed. Morrison et al. (2019) conducted a review of the literature

into schooling effects on vocabulary and found that three out of

the five studies failed to find a positive effect of schooling. Further,

the two studies that did find a positive effect either had higher pro-

gram standards or a curriculum that emphasised greater vocabulary

instruction. A potential reason for this discrepancy in findings might

be related to SES. Wright and Neuman (2014) found that children

from lower income schools (i.e., schools where more than 50% of

students received free and reduced lunch) encounter less opportunity

for vocabulary learning than children from higher income schools
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(i.e., schools where fewer than 25% of students received free and

reduced lunch). Specifically, the authors found that teachers from

economically disadvantaged schools were less likely to discuss word

meanings with children and also explained fewer challenging words.

Consequently, children from lower income schools received only

60% of the vocabulary instruction provided to their more econom-

ically advantaged peers. This is important, as several studies have

demonstrated that instruction aids children’s vocabulary acquisition

(Biemiller & Boote, 2006; Kim, 2017). In the current study, parental

education and income was above the national average, and thus, it is

likely children were enrolled into economically advantaged schools

that provided a greater degree of instructional learning, leading to an

improvement in vocabulary beyond children attending kindergarten.

Finally, it is worth mentioning that, for KG children only, those who

began the study with better performance on the CDT task showed a

greater increase in responsemonitoring activation across the year.We

did not predict this result but it seems interesting, given that the KG

children, at the mean level, did not show a significant change in activa-

tion difference across time. One interpretation for this finding relates

to the interplay between children’s individual characteristics and the

schooling/kindergarten environment.Weposit that the schooling envi-

ronment may have facilitated all school children, regardless of their

starting point, to become more sensitive to task accuracy and error,

leading to amean change in brain activation across the year associated

with stronger responsemonitoring. On the other hand, for the reasons

highlighted above, kindergarten children may encounter less explicit

instruction. Only thosewho are already advanced at the start, presum-

ably by elicitingmore advanced interactionwith adult caregivers, show

a change in brain activation associated with more efficient response

monitoring. Future studies should test this postulation by gettingmore

direct measurement of social/instructional environment of children.

The current study uniquely contributes to the current special issue

on the development of self-regulation, cognitive control, and executive

function, by being the first study to use a cut-off design to assess the

impact of 1 year of schooling on both response inhibition and response

monitoring and to relate these differences to measures of academic

achievement. Our findings highlight the causal roles of the school envi-

ronment in shaping the development of brain functions underlying

EF, particularly in the monitoring of one own’s error. Such schooling-

specific neurocognitive changes canpredict specific aspect of academic

performance across the first school year and may indicate how adap-

tive children are in adjusting to the new formal schooling environment.

At the methodological level, our study demonstrated the feasibility of

collecting good quality neural data using fNIRS from children in their

homes. Future studies may explore to what extent such neural mea-

sures can be utilized to identify children who are potentially struggling

during the critical transitional period from kindergarten to first grade.
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